I Was Told There Would Be No Math: What Every Employment Lawyer Should Know About Statistical Proof In Employment Matters

Susan E. Dunnings Vice President, Associate General Counsel Lockheed Martin Corporation

LOCKHEED MARTIN

Kris D. Meade Partner Crowell & Moring LLP crowell Greg Watchman - Moderator Associate General Counsel Freddie Mac

Paul F. White, PhD Managing Director ERS Group

Agenda

- Statistical Analyses in Employment Matters
 - Litigation Class Action/Systemic Discrimination
 - Non-Litigation RIFs, OFCCP Audits
- Compensation
 - Comparison of Averages
 - Regression Analyses
- Employee Selections
 - Comparison of Selection Rates
 - Regression Analyses
- Statistically-Significant Results. What Next?
 - Litigation Context
 - Non-Litigation Context
- Wage & Hour Issues
- Best Practices

Appropriate Uses of Statistical Analysis

- Litigation Context
 - Class certification stage commonality
 - Merits stage
 - Impact of *Wal-Mart v. Dukes* one year later
- Class Action Readiness Context Non-Litigation
 - Pro-active assessments of vulnerabilities
 - RIFs
 - Real-time assessments of other employment decisions
 - Key prepare to act on adverse findings
- OFCCP Audit Context
 - Implications of proposed revised scheduling letter

Privilege Issues

- Litigation Context
- Non-Litigation Context
 - Analyses must be done at the direction of counsel for the purpose of providing legal advice
 - Not a routinized HR or business matter
 - Formalistic approach
 - HR and business leaders acting on legal advice, rather than Legal acting as decision-makers
 - Must tightly control communications cannot share results broadly
 - Face-to-face meetings rather than email
 - Implications for process HR and management challenge
 - Legal collects all documentation at end of process

Key Considerations

- Similarly-Situated Employees
 - Statistical analysis needs to compare employees who are similarly-situated
 - At what level are decisions made?
 - What factors were considered?
- Data Integrity
 - Availability of data to model the reality of the decisionmaking process
 - Data strengths and weaknesses
 - Likely affect on outcomes

Statistical Methods of Analyzing Compensation

• Difference Between Averages

• Multiple Regression Analysis

Comparison of Averages

- Calculate the average salary of one grouping of employees.
 - Average Salary of Male Employees = \$77,648
- Calculate the average salary of second grouping of employees.
 - Average Salary of Female Employees = \$61,996
- Compute the difference between the average salary of the two groupings of employees.

- Difference = -\$15,652

• Is the difference statistically significant?

Limitations of Average Salary Comparisons

- They do not control for other factors that are used to determine compensation levels
- Can be heavily influenced by unusual observations

Potential Determinants of Employee Pay

- Pay Grade / Pay Plan
- Job Title
- Years of company-specific experience
- Education
- Market pay rates
- Prior relevant experience
- Other (varies by employer)

Regression Analysis

- Statistical method used to measure the relationship between variables.
 - Are they positively or negatively related?
 - How strongly are they related?
 - Are they significantly related?
 - Regression analysis accounts for differences between groupings of employees with respect to factors that affect compensation
 - Then estimates average pay differential

Hypothetical Example - For Illustrative Purposes Only Relationship Between Actual Salary and Market Salary

Estimated Simple Regression Line Relationship Between Actual Salary and Market Salary

Estimated Simple Regression Line Relationship Between Actual Salary and Market Salary

Hypothetical Example - For Illustrative Purposes Only

"Influential Observations"

- A few employees may contribute substantially more than others to the protected/unprotected salary gap.
 - These employees are called *outliers*.
 - Employees who unduly influence the equation can be identified by using more advanced regression techniques.

Potential Explanations for Influential Employees

- The salaries of employees with the greatest influence can be investigated. Is it:
 - Measurement error?
 - Unusual compensation plans?
 - Unusual or atypical jobs?
 - Something else?
- If there are data problems they should be corrected.
- If there are individuals who have highly unusual compensation plans, then the model may not be appropriate for these employees.

Multiple Regression Analysis

Company ABC

, Model	Female/Male Salary Difference (Female Coefficient)	Number of Standard Dev. (t)
1. Female	-\$15,652	-11.23
2. Model 1 plus Pay Grade	-\$10,956	-6.05
3. Model 2 plus Years of Experience Variable	-\$ 2,385	-2.89
4. Model 3 plus Highest Level of Education Indicators	-\$ 1,812	-2.31
5. Model 4 plus Admin Indicato	or -\$ 749	-1.42

Common Causes of Pay Disparities

- Pay decisions made in the past
 - Starting pay, merit increases, promotional increases, pay adjustments
- Performance evaluations vs. raises
- Job titles vs. actual responsibilities
- Comparisons of non-similarly-situated employees
- Natural attrition
- Mergers and acquisitions

Employment Selections

Fisher's Exact Test

- Comparison of selection rates
 Comparison group's status vs. selection status
- Selection rate of group vs. availability of group
- Small and large sample sizes

Fisher's Exact Test

	Layoff	Retain	Total
40 Plus	40	20	60
LT 40	60	62	122
Total	100	82	182

Statistically Significant at 2.22 Standard Deviations

Regression Analysis

- Selection decisions usually based on multiple factors
 - Experience
 - Qualifications
 - Market factors
 - Organizational unit
 - Occupation/Job title
 - Other
- Logistic Regression
 - Does the protected group have a significantly greater/lesser probability of being selected <u>after</u> accounting for other factors that affect the selection decision?

Logistic Regression is Used When the Dependent Variable is Zero or 1

- Selected (1) or Not (0)
- Hired (1) or Not (0)
- Terminated (1) or Not (0)
- Promoted (1) or Not (0)
- Yes/No (It happened (1) or it did not (0))

We want to determine the probability of selection. How likely is it that someone will be selected?

Hypothetical Example - For Illustrative Purposes Only

Logistic Regression Analysis of Layoffs Score Sheet Data 40+ vs. LT 40

Logit estimate	es			Numbe	r of obs	=	182
				LR ch	i2(9)	=	83.36
				Prob	> chi2	=	0.0000
Log likelihood	d = -55.417889	9		Pseud	o R2	=	0.4293
Promo	Odds Ratio	Std. Err.	Z	P> z	[95%	Conf.	Interval]
40 plus	1.053792	1.142523	1.00	0.317	.5539	251	6.203987
eval_pts	1.284233	.0611108	5.26	0.000	1.169	874	1.409771
tig_pts	1.91386	.4146098	3.00	0.003	1.251	727	2.926244
ed_pts	1.298449	.0743026	4.56	0.000	1.160	688	1.45256
train_pts	1.269783	.0871221	3.48	0.000	1.11	001	1.452553
Grade F	.0023249	.0029475	-4.78	0.000	.0001	937	.0278975
Grade G	.0004915	.000816	-4.59	0.000	.000	019	.0127251
DC	1.937040	17.32524	3.21	0.001	3.151	807	113.7797
LA	.0816028	.0842755	-2.43	0.015	.0107	802	.6177112

LOCKBEED MA

Statistically Significant Results in Litigation or Audit Context: Then What?

- Does the model accurately reflect decision-making process?
- Data correct?
- Outliers?
- Correct statistical methods?
- Correct computer programs?
- Identify the source of disparity focus on segment of workforce to limit liability & damages

Statistically Significant Results in Non-Litigation Context: Then What?

- Same considerations, plus others driven by context
- Review/revisit decisions and criteria
 - "Validation" of results
 - Revise selection or reward decisions, make pay adjustments
- Identify process improvement opportunities
 - Targeted training focus on sources of disparities
 - Narrow range of discretion, revise selection criteria
- Identify the source of disparity focus on segment of workforce to limit liability & damages

Allegations of Wage & Hour Violations

- Plaintiff/Agency Approaches
 - -Misclassification, Off-the-clock
 - -Both depend on measures of work time
 - -Reliance on claims of named plaintiffs or claimants as being representative
 - Take advantage of shortcomings in employers' data

Commonality – Class Cert

Overtime Pay as a Percent of Total Pay - Opt-Ins 2009

Overtime Pay as a Percent of Total Pay (Regular Plus Overtime Pay)

Example: Meal Break Violation?

Date	Time of Swipe	Туре	Edited
10/26	11:00AM	In	No
10/26	4:30PM	Out	No

11:00AM

4:30PM

- A typical timekeeping system will interpret this sequence of swipes as 5.5 hours of work.
- The same sequence of swipes may be used to support an allegation that there was a meal period violation because there is no record of a meal period taken during the shift.

- To leave early, the employee took a meal period at the end of the shift.
- The employee did not want to take a break that day (waiver).
- The employee took the break yet forgot to swipe for it.

Example: Off-the-Clock Work?

34

Allegations of Wage & Hour Violations

- Suggestions for employers
 - -Understand and document employee classification decisions
 - -Review quality of data and policies
 - Proactive confidential analyses
 - Off-the-clock
 - Meal and Rest break violations
 - Correct calculation of overtime rate
 - Minimum wage violations
 - Time-shaving
 - If problems, company-wide or isolated to rogue manager?

Best Practices

- Data maintenance
- Know where you stand
 - Regular assessments, directed by counsel
 - Focus on compensation, selection decisions, and wage and hour
- Comparisons of similarly-situated employees
 Job titles vs. actual responsibilities
- Validate performance evaluation process key selection decision and variable in other regression models
- Justify starting salary levels capture justifications
- Be prepared to act upon adverse findings

I Was Told There Would Be No Math: What Every Employment Lawyer Should Know About Statistical Proof In Employment Matters

Susan E. Dunnings Vice President, Associate General Counsel Lockheed Martin Corporation

LOCKHEED MARTIN

Kris D. Meade Partner Crowell & Moring LLP crowell moring Greg Watchman - Moderator Associate General Counsel Freddie Mac

Paul F. White, PhD Managing Director ERS Group

